Bayesian methods for borrowing historical information: The power prior for the linear regression model

Akalu Banbeta^{1,2}, Emmanuel Lesaffre³, and Joost van Rosmalen⁴

¹I-Biostat, UHasselt, Hasselt, Belgium

²Department of Statistics, Jimma University, Jimma, Ethiopia

³I-Biostat, KU Leuven, Leuven, Belgium

⁴Department of Biostatistics, Erasmus University Medical Center, Rotterdam, The Netherlands

Related publications:

- Banbeta et al et al, Stat in Med 38 (7), 1147-1169 (2019)
- Neuenschwander et al, Clinic Trials 7, 5-18 (2010)

Introduction

- Including control data from similar previous clinical trials (historical data) may improve power and may reduce the necessary study size.
- In practice, there are unanticipated differences of patients' characteristics (covariates) across trials, which can lead to a biased estimates of the treatment effect, unless the effects of the covariates are adjusted for.

Bayesian approaches

- Modified power prior (MPP): estimate the relative weight of the historical controls based on difference with current controls
 - assumes independent power parameter ("MPP Ind") and
 - the power parameter have a hierarchical structure ("DMPP").
- Meta-analytic-predictive (MAP) prior: assume exchangeability of parameters across all studies
- Pooled data: pooling of historical and randomized controls
- Current data: ignoring historical controls

Simulation design and settings

Aim of the study: Comparison of methods for their performance.

Data generation:

■ 3 historical control studies with 100 subjects per arm in each trial. For the i^{th} subject in the k^{th} trial the response will be

$$y_{ik} \sim N(\mu_{ik}^*, \sigma^2)$$

$$\mu_{ik}^* = b_{ok} + b_{1k} x_{1k} + b_{2k} x_{2k} + b_{3k} x_{3k},$$

 x_1 for the treatment type x_2 for a categorical covariate x_3 for a continuous covariate

Scenarios:

Scenario 1: intercept (b_{ok}) varies between studies

Scenario 2: covariate coefficients (b_{2k} and b_{3k}) vary across studies

Scenario 3: covariate distribution $(x_{2k} \text{ and } x_{3k})$ vary cross studies

Analysis: With and without covariate adjustment

Results and Conclusions

			Scenario 1				Scenario 2		Scenario3	
		Unadj		Adj		Unadj Adj		Unadj	Unadj Adj	
Outcome	Method	Hom	Het	Hom	Het	Het	Het	Het	Het	
Type I error	Current Data	0.061	0.062	0.065	0.051	0.045	0.056	0.060	0.060	
	Pooled Data	0.055	0.309	0.054	0.389	0.373	0.432	0.151	0.050	
	MAP	0.055	0.058	0.045	0.051	0.045	0.036	0.065	0.043	
	MPP Ind	0.050	0.111	0.042	0.130	0.105	0.047	0.066	0.042	
	DMPP	0.051	0.103	0.042	0.125	0.079	0.045	0.072	0.041	
Power	Current Data	0.537	0.555	0.710	0.711	0.443	0.717	0.527	0.688	
	Pooled Data	0.702	0.618	0.861	0.716	0.513	0.594	0.904	0.855	
	MAP	0.598	0.554	0.769	0.717	0.397	0.524	0.543	0.757	
	MPP Ind	0.643	0.592	0.818	0.730	0.468	0.695	0.655	0.817	
	DMPP	0.650	0.582	0.823	0.732	0.463	0.715	0.687	0.821	
Calibrated Power	Current Data	0.510	0.520	0.676	0.708	0.466	0.715	0.491	0.656	
	Pooled Data	0.654	0.255	0.852	0.371	0.188	0.267	0.768	0.855	
	MAP	0.575	0.529	0.784	0.716	0.412	0.593	0.505	0.775	
	MPP Ind	0.644	0.431	0.829	0.571	0.396	0.706	0.607	0.833	
	DMPP	0.649	0.437	0.834	0.598		0.733		0.835	

Abbreviations: Adj, Adjusted; DMPP, dependent modified power prior; Het, heterogeneous; Hom, homogeneous; MAP, meta-analytic predictive; MPP, modified power prior; Unadj, Unadjusted.

- For homogeneous data the Dependent MPP methods have higher power than its competitors
- For variation across studies in the intercept of model, the MPP methods yielded slightly increased type I error rates, whereas the MAP approach maintained the nominal 5% type I error rate.
- The MPP approach could handle variations of data due to the covariate coefficients and covariate distributions across studies and thereby gives better results than the MAP.

